
@rakeshgohel01

Comprehensive summary of Agents
whitepaper released by Google

Original Authors: Julia Wiesinger,

Patrick Marlow and Vladimir Vuskovic

Agents

Summarized by

Whitepaper

Brief
Summary of the a well researched
whitepaper on AI Agents.

In this post, i have summarized all the important
points talked within the paper in a concise
manner, so that it will be easier to understand
for different use-cases.

Let’s learn together,

What are AI Agents?

Google shares what they think
about agentic System and

AI Agents in general.

They share how the basic
architecture of AI Agents looks like

1

What is an Agent?
According to Google,

A Generative AI agent is an autonomous
application that observes and acts on the
world to achieve goals without human
intervention.

They are autonomous because of various
components used within the architecture
which makes them very different from
other GenAI applications

The paper even lists basic parts of an
agent which makes them autonomous.

Those parts are:

Model Tools The Orchestrator

 Fig: General agent architecture and components

Model

Description of the core agent architecture:

In an agent's context, a model is the language model
(LM) that makes centralized decisions, which can be of
any size and follow reasoning frameworks like ReAct or
Chain-of-Thought.

For optimal results, choose a model that fits your
application and is trained on relevant data, though it
may not be trained with the agent's specific settings.

Tools

Foundational models can't interact with the outside world,
but tools enable agents to do so by connecting to external
data and services.

Tools, often using web API methods like GET and POST, allow
agents to perform real-world tasks and support advanced
systems like retrieval-augmented generation (RAG).

The Orchestrator

The orchestration layer is a cyclical process where an
agent takes in information, reasons internally, and decides
its next action until it reaches its goal.

This layer's complexity varies from simple calculations to
advanced reasoning techniques, depending on the agent
and task.

Since, models are so important in AI Agents.

You might be wondering what seems to be core
differences between them?

Core Differences between Models and Agents

Cognitive Architecture:
How do Agents Operate?
They operate though a distinct Process�

� Gather information (e.g., user input, available data)�
� Reason internally to plan actions based on gathered

information�
� Execute actions and make adjustments as needed.

To perform, these core components�

� Orchestration layer: Maintains memory, state,
reasoning, and planning�

� Uses prompt engineering frameworks for effective
interaction and task completion.

Few Popular Frameworks they described to improve
reasoning are�

� ReAct: Guides reasoning and action for user queries,
improving human interoperability�

� Chain-of-Thought (CoT): Enables reasoning
through intermediate steps, with various sub-
techniques�

� Tree-of-Thoughts (ToT): Suited for exploration
tasks, generalizing over CoT for problem-solving.

An example for ReAct

 Fig: General ReAct agent architecture

�� The agent receives a user query and initiates the
ReAct sequence�

�� It generates a thought, decides on an action (which
may involve choosing a tool like Flights, Search, Code,
or none), provides inputs to the tool if required, and
observes the result�

�� The process repeats as necessary, culminating in a
final answer to the user.

ReAct summarized workflow:

Tools: A power hand
for Agents
Language models can't interact
with the real world, limiting their
usefulness in situations requiring
external data or systems.

Tools like Functions, Extensions,
and Data Stores bridge this gap,
enabling agents to perform
various tasks accurately and
reliably.

2

Extensions
According to Google,

Extensions standardize the connection
between APIs and agents, allowing seamless
API execution.

For instance, an agent helping users book
flights can easily interact with the Google
Flights API using Extensions.

This approach is more scalable and reliable
than implementing custom code to handle
various user queries and edge cases

Figure: Extensions connect Agents to External APIs

Functions
According to Google,

Functions are reusable code modules that
perform specific tasks, with the developer
defining when and how to use them.

Unlike Extensions, functions are executed
client-side and do not make live API calls,
allowing developers more control over data
flow.

 Figure: Delineating client vs. agent side control for extensions

and function calling

Data Store
According to Google,

A language model's knowledge is static, like
a library with no new books, making it
challenging to stay current with evolving
information.

Data Stores solve this by providing access to
dynamic and up-to-date data, ensuring the
model's responses remain factual and
relevant.

Developers can easily add data in its original
format, such as spreadsheets or PDFs,
without needing to retrain or fine-tune the
mode.

Data Store
RAG Application example
In Generative AI agents, Data Stores are
implemented as vector databases that store
data as high-dimensional vector
embeddings, accessible to the agent at
runtime.

A prominent example is Retrieval-
Augmented Generation (RAG) application

The process involves generating query
embeddings, matching them against the
vector database, retrieving relevant content,
and formulating a response.

Tool use Summary

Targeted learning
Using few methods, you can leverage
targeted learning which will help you get
your desired result faster.

Few of those methods are�

�� In-context learning: Provides the model
with a prompt, tools, and few-shot
examples at inference time, allowing it to
learn on the fly how and when to use tools
for specific tasks, similar to a chef
preparing a dish with limited information�

�� Retrieval-based in-context learning:
Dynamically populates the model prompt
with the most relevant information, tools,
and examples from external memory, like
a chef choosing ingredients and
cookbooks from a well-stocked pantry�

�� Fine-tuning based learning: Involves
training the model with a larger dataset
of specific examples before inference,
helping it understand tool application
prior to user queries, akin to a chef
learning a new cuisine through formal
training.

Building your
Agents with

Google
Google has shared sample codes
so that you can also get started
for building AI agents

3

Getting started with
Langchain

Google’s paper contains two full sample codes to
build AI Agents, one of them being Langchain.

You can access these codes from paper linked in
comments

Production grade architecture
with Vertex AI agents

Google also shares an architecture for
designated workflow designed with dedicated UI

and API’s for a production ready AI Agents.

This architecture consists of all the required
components for building AI Agents

Summary

This whitepaper explored the foundational
components of Generative AI agents and their
implementation as cognitive architectures.

Agents enhance language models by using tools
to access real-time information, suggest actions,
and execute complex tasks autonomously.

The orchestration layer is central to an agent's
operation, using reasoning techniques like ReAct
and Chain-of-Thought to guide decisions and
actions.

Tools such as Extensions, Functions, and Data
Stores enable agents to interact with external
systems and data, while future advancements
and 'agent chaining' promise even more
sophisticated solutions.

“We help businesses 10X their growth with
Cloud and AI Agents”

Follow to learn more about AI Agents

linkedin.com/in/rakeshgohel01

Hi, I am
Rakesh Gohel

