ANTHROP\C

HOW 1O
oulld
effective
Al Agents

Comprehensive breakdown of
Anthropic’s report on “Building effective
Agents”

@ @rakeshgohelOl e

ANTHROP\C Claude v Research Company Careers News

{Produc E

Building effective agents

Dec 20, 2024

Over the past year, we've worked with dozens of teams building large
language model (LLM) agents across industries. Consistently, the most
successful implementations weren't using complex frameworks or
specialized libraries. Instead, they were building with simple, composable
patterns.

Recenth

Anthropic released a full blog on how to
create powerful agentic systems.

In this post, | will try cover all those details in
well defined manner so that it is easier to
Implement for different use-cases.

Lets get started....

>

Google l ANTHROP\C

Agents How to
oulld
effective
Al Agents

Comprehensive summary of
Anthropic’s report on “Building effective
Agents”

@rakeshgohel01) @ @rakeshgohel01 0

Comprehensive summary of Agents

Also

This report is quite different from our last
breakdown about Google’'s Al Agent white paper.

Earlier coverage, Google's paper was more into
What are Al Agents?

Where's Anthropic’s blog is about Why and When

>

you should use Al Agents

Basics of Al Agents

Anthropic shares what they think
about agentic System and Al
Agents in general.

They share what anthropic calls as
agentic system and differences
between Al Agents and Agentic
workflow

Anthropic’s

Agentic System

Workflows are systems where LLMs and
tools are orchestrated through predefined
code paths

AR O

Agents, on the other hand, are systems
where LLMs dynamically direct their own
processes and tool usage, maintaining
control over how they accomplish tasks

Anthropic’s
Al Agent Architecture

Call/

Response

Retrieval

Anthropic argues that the augmented LLM is the
core building block of Agentic system
supported with tools, memory and a smart
retrieval system.

>

When to choose a
Al Agent framework

Anthropic shares a clever
argument to not always go for
agentic framework while building
Al Agents

When and how to
choose frameworks

Anthropic gives example of popular frameworks like
Langchain and Amazon bedrock agents, and share
why you should not depend on frameworks

¢ Anthropic shares

1. Start with LLM API's - Most agentic pattern can be
built with simple LLM API's.

2. If you need complex workflows then only use
frameworks.

3. You should avoid frameworks as much as
possible to make sure that your workflow
remains clean.

3. They share this because frameworks come with
large underlying code and sometimes this could
be counter intuitive to your work

>

Anthropic’s MCP —

Get Started

Introduction
Get started with the Model Context Protocol (MCP)

MCP is an open protocol that standardizes how applications provide context to LLMs. Think of
MCP like a USB-C port for Al applications. Just as USB-C provides a standardized way to
connect your devices to various peripherals and accessories, MCP provides a standardized

way to connect Al models to different data sources and tools.

Why MCP?

MCP helps you build agents and complex workflows on top of LLMs. LLMs frequently need to

integrate with data and tools, and MCP provides:

e A growing list of pre-built integrations that your LLM can directly plug into
e The flexibility to switch between LLM providers and vendors

* Best practices for securing your data within your infrastructure

Anthropic suggests using their latest open-source
framework protocol, MCP(Model Context Protocol) if
you are building agents with a simple client
workflow.

They even gave a_link to their LLM cookbook which
you also access from the blog linked in the
comments.

>

Qnthropic's most

common
LLM-based Workflows

Anthropic shares few common
LLM-based workflows for you

(instead of relying heavily on

frameworks

Workflow: Prompt chaining

LLM Call 1

Output |

Fail

Pass

LLM Call 2

Output 2

— Description

Prompt chaining decomposes a task into a
sequence of steps, where each LLM call processes

the output of the previous one.

You can add programmatic checks like gate in the
diagram and on any intermediate steps to ensure

that the process is still on track.

This workflow is best for tasks that can be broken
down into fixed, simpler subtasks, aiming to improve
accuracy at the cost of increased latency.

Example: Generating Marketing copy and creating
outline for a document

>

Workflow: Routing

LLM Call Router

— Description
Routing classifies an input and directs it to a

specialized followup task.

This workflow allows for separation of concerns, and
building more specialized prompts.

It is effective for complex tasks with distinct
categories that are best handled separately, relying
on accurate classification by an LLM or traditional

model..

Example: Directing different types of customer
service queries, Routing easy questions to smaller

models

>

Workflow: Parallelization

LLM Call Router

K—H
= o= o

|
ot

>

— Description

LLMs can sometimes work simultaneously on a task
and have their outputs aggregated.

This workflow, parallelization, manifests in two key

variations:
» Sectioning: Breaking a task into independent

subtasks run in parallel.
« Voting: Running the same task multiple times to

get diverse outputs.

Parallelization is effective when subtasks can be
processed simultaneously for speed or when
multiple perspectives are needed for higher

confidence.

Example: Reviewing a piece of code for
vulnerabilities, Evaluating content

>

Workflow: Orchestrator based

Orchestrator

LLM CCIII 1 LLM Call 2 LLM CCIII 3

\VV\V

Synthesizer

|
ot

>

— Description

In the orchestrator-workers workflow, a central LLM
dynamically breaks down tasks, delegates them to
worker LLMs, and synthesizes their results.

This workflow is ideal for complex tasks where
subtasks are unpredictable, such as coding tasks

with varying file changes.

Example: Coding workflows that make complex
changes to multiple files, Search tasks that involve

gathering information from multiple information

>

Workflow: Evaluator-optimizer

LLM Call
Generator

Rejected+ Solution
Feedback

LLM Call
Evaluator
J Accepted

>

— Description

In the evaluator-optimizer workflow, one LLM cali
generates a response while another provides
evaluation and feedback in a loop.

This workflow is effective when there are clear
evaluation criteria and iterative refinement adds
measurable value.

It fits well when LLM responses improve with human
feedback and the LLM can provide such feedback,
similar to the iterative writing process.t.

Example: Complex search tasks that require multiple
rounds of searching, Creating conversational Agents

>

Anthropic’s
Al Agent definition
and architecture

Agents are becoming common in
production as LLMs. So, Anthropic
creates a common architecture
about how agents works

Autonomous Agent

Feedback Action

Environment

— Description

Agents are increasingly used in production as LLMs
advance in understanding, reasoning, planning,
and tool use.

They start with human input, operate
independently, and verify progress, pausing for
feedback as needed. Tasks end upon completion or
predefined conditions.

Agents are suited for open-ended problems where
steps are unpredictable and paths can't be
hardcoded..

Example: A coding Agent like cursor, GUI based
Agents

They also share a high level sequence diagram for a
coding agent >

>

Interface

Query

Until tasks clear

Clarify

Refine

Send context

Complete

Search files
Return paths
Until tests pass
Write code
Status
Test

Results

Environment

Sequence diagram for high-level coding agent

Conclusion

Anthropic argue that creating an agentic solution is
not just about using all the available resources.

Also the workflow shared are not just perspective,
they share that this workflow was curated with the
help of their customer and internal
experimentation.

Hence, while building agents they want to focus on
these key things:

1. Maintain simplicity in your agent's design.

2. Prioritize transparency by explicitly showing the
agent’s planning steps.

3. Carefully craft your agent-computer interface
(ACI) through thorough tool documentation and
testing.

>

Additional Info

They also argue about building a proper
Agent-computer interface just like that way we
build your Human-based interface.

This will help Al Agent to navigate faster with
user-interface

Additional Info

They also request agent builders to properly
evaluate model's parameters and
computational cost before building an agent to
save cost and resources accordingly.

Use smaller models for quick tasks and bigger
model for reasoning tasks

Rakesh Gohel N

“We help businesses 10X their growth with
Cloud and Al Agents”

FOLLOW TO LEARN MORE ABOUT Al AGENTS

linkedin.com/in/rakeshgohel01

