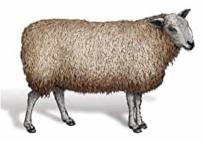


Exports and Imports to and from DENMARK & NORWAY from 1700 to 1780.

The Bottom line is divided into Years, the Right hand line into L10,000 each. Net enter 196 by W. Playtain



Definition: Time-Series Analysis

O'REILLY'

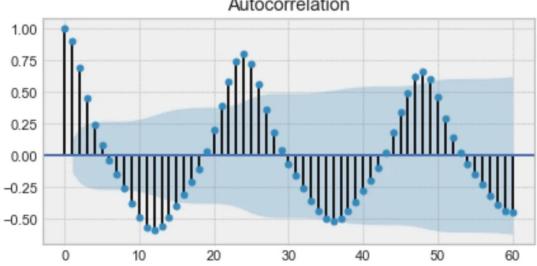
Practical Time Series Analysis

Prediction with Statistics & Machine Learning

Aileen Nielsen

시계열 분석은 일정 간격의 시간순으로 저장된 데이터에서 유의미한 정보를 뽑아 내는 작업으로 과거의 행동을 이해하고 미래의 행동을 예측하는데 사용됩니다.

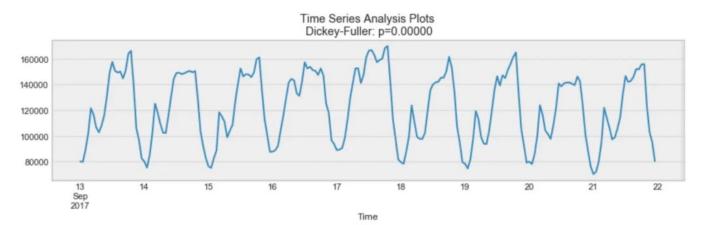
- Exploratory(Descriptive) Analysis: 주로 시각화 작업을 통해 trends, cycles, seasonality 등의 패턴을 이해하는 작업
- Forecasting: 과거 관측값으로 모델을 만들어 미래에 발생할 값을 예측하는 작업


- 샘플 데이터셋: UCI Machine Learning Repository (<u>https://archive-beta.ics.uci.edu/</u>)
- 책: Forecasting (<u>https://otexts.com/fpp2/index.html</u>)

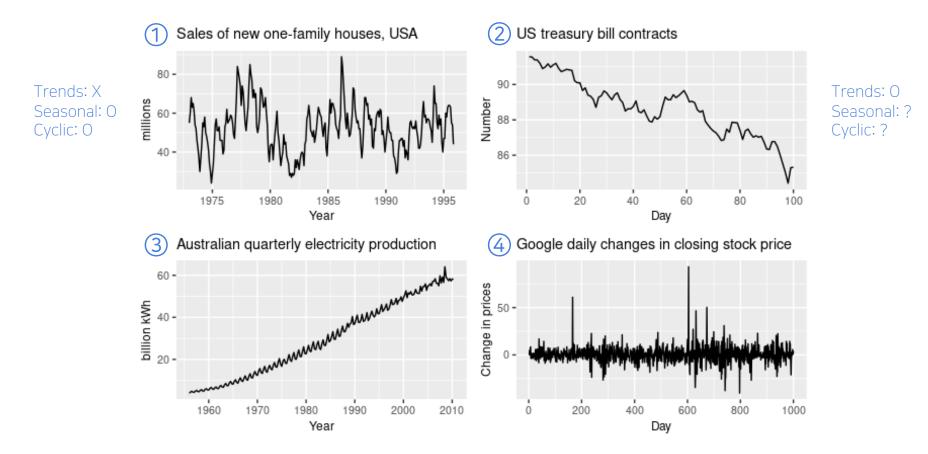
Time-Series Analysis – Key Concept

Temporal Behavior of Data (시간의 흐름에 따른 데이터의 특성):

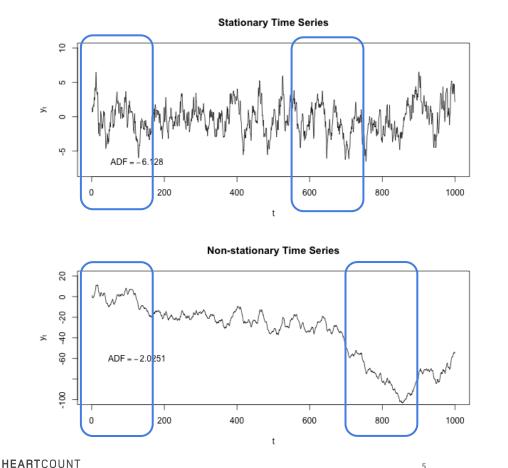
- Autocorrelation
 - the similarity between observations as a function of the time lag between them.
 - "자기"와 "특정 시차에 위치한 과거의 자기"와 유사한 정도
- 아래 그림: 24 time unit마다 유사한 관측값이 목격됨. (hint for seasonality)



Time-Series Analysis – Key Concept

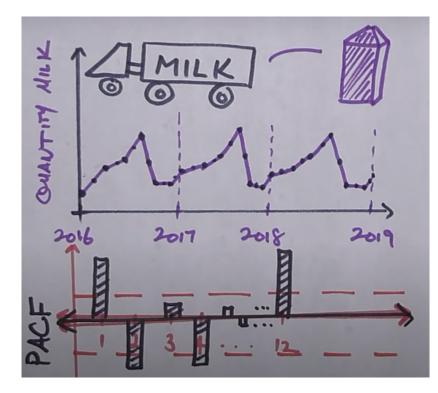

Temporal Behavior of Data (시간의 흐름에 따른 데이터의 특성):

- Seasonality: 분기, 달, 요일, 시간대(오전/오후) 등 계절적 요인에 따라 주기적 패턴을 가지고 변동하는 경우
 - 참고) Cyclic Pattern: 주기적이진 않지만(<u>fixed period X</u>) 증가, 하락하는 패턴을 보이는 경우 (경기의 부침)
- Stationarity: 평균, 분산과 같은 통계적 특성이 변하지 않는 경우
 - Dickey-Fuller test: 시계열 데이터가 stationary한지 판별하는 통계적 검정방식



Trends, Seasonal, Cyclic

Stationarity (정상성)

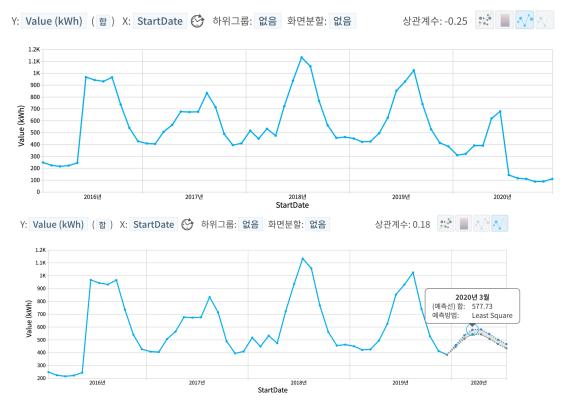


Stationarity

- the statistical properties of a process generating a time series do not change over time.
- stationarity is important ٠ because, in its absence, a model describing the data will vary in accuracy at different time points.

AR Model (자기회귀 모델)

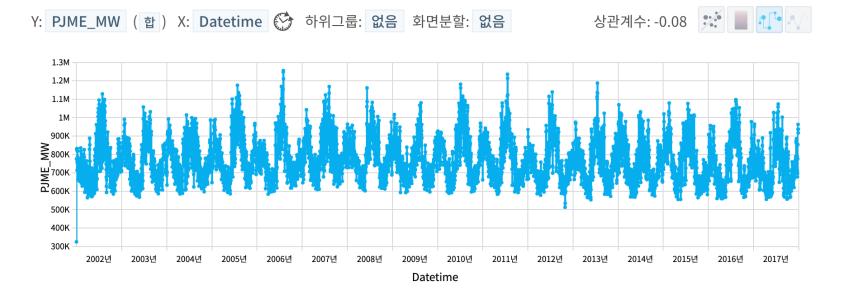
$m_{\pm} = \beta_{0} + \beta_{1} m_{\pm -1} + \beta_{2} m_{\pm -2} + \beta_{4} m_{\pm -4} + \beta_{12} m_{\pm -12} + \epsilon_{\pm}$


- M_{t-2}, M_{t-4} 가 이번달 생산량과 높은 상관관계
- PACF(편자기상관함수) 차트 • M_{t-1}, M_{t-12} 가 이번달 생산량과 높은 + 상관관계
- M_{t-2}: 두달 전 우유 생산량 (Lag:2) • 모든 이전 달 생산량을 사용할 수도 있지만 M_{t-n}을 최소화하는 게 좋음 → PACF 활용
- M_{t-1}: 지난달 우유 생산량 (Lag:1)
- 월별 우유 생산량이 궁금함 M₊: 이번달 우유 생산량
- AR: AutoRegressive 자기를 사용해서 자기를 예측

AR Model

AR Model (자기회귀 모델)

AR model makes an assumption that the observations at previous time steps are useful to predict the value at the next time step.



Time-Series ML Model(XGBoost)

PJM Hourly Energy Consumption Data

- PJM 전력회사의 시간별 에너지 소비 데이터
- XGBoost: AR 모델과 달리 시간에 대한 개념없이 feature를 사용해서 분류/예측하는 tree 모형
- <u>https://www.kaggle.com/code/soheiltehranipour/xgboost-timeseries-energy-consumption</u>

실습 시간

https://www.heartcount.io/login

